Определение нестандартной задачи приведено также в книге «Как научиться решать задачи» авторов Л.М. Фридмана, Е.Н. Турецкого: «Нестандартные задачи - это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения».

Не следует путать нестандартные задачи с задачами повышенной сложности. Условия задач повышенной сложности таковы, что позволяют ученикам довольно легко выделить тот математический аппарат, который нужен для решения задачи по математике. Учитель контролирует процесс закрепления знаний, предусмотренных программой обучения решением задач этого типа. А вот нестандартная задача предполагает наличие исследовательского характера. Однако если решение задачи по математике для одного учащегося является нестандартным, поскольку он незнаком с методами решения задач данного вида, то для другого - решение задачи происходит стандартным образом, так как он уже решал такие задачи и не одну. Одна и та же задача по математике в 5 классе нестандартна, а в 6 классе она является обычной, и даже не повышенной сложности.

Анализ учебников и учебных пособий по математике показывает, что каждая текстовая задача в определенных условиях может быть нестандартной, а в других - обычной, стандартной. Стандартная задача одного курса математики может быть нестандартной в другом курсе.

Опираясь на анализ теории и практики использования нестандартных задач в обучении математике, можно установить их общую и специфическую роль. Нестандартные задачи:

· учат детей использовать не только готовые алгоритмы, но и самостоятельно находить новые способы решения задач, т.е. способствуют умению находить оригинальные способы решения задач;

· оказывают влияние на развитие смекалки, сообразительности учащихся;

· препятствуют выработке вредных штампов при решении задач, разрушают неправильные ассоциации в знаниях и умениях учащихся, предполагают не столько усвоение алгоритмических приемов, сколько нахождение новых связей в знаниях, к переносу знаний в новые условия, к овладению разнообразными приемами умственной деятельности;

· создают благоприятные условия для повышения прочности и глубины знаний учащихся, обеспечивают сознательное усвоение математических понятий.

Нестандартные задачи:

· не должны иметь уже готовых, заученных детьми алгоритмов;

· должны быть доступны по содержанию всем учащимся;

· должны быть интересными по содержанию;

· для решения нестандартных задач учащимся должно хватать знаний, усвоенных ими по программе.

Решение нестандартных задач активизирует деятельность учащихся. Учащиеся учатся сравнивать, классифицировать, обобщать, анализировать, а это способствует более прочному и сознательному усвоению знаний.

Как показала практика, нестандартные задачи весьма полезны не только для уроков, но и для внеклассных занятий, для олимпиадных заданий, так как при этом открывается возможность по-настоящему дифференцировать результаты каждого участника. Такие задачи могут с успехом использоваться и в качестве индивидуальных заданий для тех учеников, которые легко и быстро справляются с основной частью самостоятельной работы на уроке, или для желающих в качестве дополнительных заданий. В результате учащиеся получают интеллектуальное развитие и подготовку к активной практической деятельности.

Общепринятой классификации нестандартных задач нет, но Б.А. Кордемский выделяет следующие виды таких задач:

· Задачи, примыкающие к школьному курсу математики, но повышенной трудности - типа задач математических олимпиад. Предназначаются в основном для школьников с определившимся интересом к математике; тематически эти задачи обычно связаны с тем или иным определённым разделом школьной программы. Относящиеся сюда упражнения углубляют учебный материал, дополняют и обобщают отдельные положения школьного курса, расширяют математический кругозор, развивают навыки в решении трудных задач.

· Задачи типа математических развлечений. Прямого отношения к школьной программе не имеют и, как правило, не предполагают большой математической подготовки. Это не значит, однако, что во вторую категорию задач входят только лёгкие упражнения. Здесь есть задачи с очень трудным решением и такие задачи, решение которых до сих пор не получено. «Нестандартные задачи, поданные в увлекательной форме, вносят эмоциональный момент в умственные занятия. Не связанные с необходимостью всякий раз применять для их решения заученные правила и приёмы, они требуют мобилизации всех накопленных знаний, приучают к поискам своеобразных, не шаблонных способов решения, обогащают искусство решения красивыми примерами, заставляют восхищаться силой разума».

 

В высыпающемся меню к этому разделу сайта Вы найдете интересные нестандартные задачи, математические головоломки, задачи на развитие математической логики и многое другое.

 

 

 


© 2023 Тетрадкин Град
Яндекс.Метрика Top.Mail.Ru