В Ливингстоне, штат Луизиана, и Хэнфорде, штат Вашингтон, расположены лазерные установки длиной по 4 километра. Четырнадцатого сентября 2015 года в 05:51 по летнему восточному времени по установке в Ливингстоне прошла дрожь. Через 6,9 миллисекунды она достигла установки в Хэнфорде. Ошибки быть не могло: через обе установки прошла гравитационная волна, рябь на поверхности самой ткани пространства-времени, предсказанная Эйнштейном почти 100 лет назад.

В одной далёкой-далёкой галактике во времена, когда Землю населяли лишь бактерии, две огромные чёрные дыры сделали последний оборот в своём смертельном танце и слились в поцелуе. Масса, равная массе трёх солнц, исчезла в секунду, подняв цунами в пространстве-времени. Волна двигалась со скоростью света, и в какой-то момент её мощность в 50 раз превысила мощность всех звёзд во Вселенной.

Ибо в те дни я был в расцвете сил для изобретательства и более чем когда-либо впоследствии размышлял о математике и философии.

Исаак Ньютон

Ты потерял сознание, и я тебя подхватил. Впервые в жизни я держал в руках другого человека. У тебя такие тяжёлые кости. Я встал между тобой и гравитацией. Невероятно.

Элизабет Нокс. «Удача винодела»

— Итак, мистер Ньютон, как вам в голову пришла идея закона всемирного тяготения?

Разговор происходит в саду усадьбы Вулсторп спустя полвека после знаменательного события. Через стол от пожилого натурфилософа, о котором сегодня говорят все, сидит юный священник и археолог Уильям Стьюкли, взявший на себя тяжёлый труд написать первую биографию Исаака Ньютона. Где-то в саду журчит ручей, а в поле за оградой то и дело блеют ягнята. На густую траву перед ними садится ворон, что-то склёвывает с земли и улетает прочь.

Исаак Ньютон родился на Рождество в 1643 году. Несмотря на такую символичную дату, «особенный» младенец был таким крошечным, что мог поместиться в кружку из-под кварты пива, и таким слабым, что родные предсказывали ему смерть через несколько дней.

Отец Ньютона умер за три месяца до его рождения, и мать осталась практически без средств к существованию. Когда мальчику исполнилось три года, она приняла предложение руки и сердца от богатого священника почти в два раза старше её. Тому требовалась жена, но не пасынок, поэтому мать Ньютона переехала в приход к новому мужу в соседнюю деревню, оставив сына на попечение бабки с дедом. Ньютон ненавидел эту замену родителей и позднее в своём дневнике признавался, как «угрожал матушке и отцу Смитам сжечь их вместе с их домом».

Когда в 1665 году Ньютон снова вернулся в Вулсторп, стояло лето и воздух был наполнен жужжанием насекомых и пением птиц. Картина была столь идиллической, что трудно было поверить, будто всего в 160 километрах отсюда, в Лондоне, люди падали замертво на улицах. Они дрожали в ознобе и лихорадке, страдали от судорог и болей в конечностях, кто-то хватал ртом воздух, кто-то кашлял кровью. В подмышках и паху у них надувались бубоны — это чумные бактерии размножались в их лимфатических узлах. Вспышка чумы унесла тогда более 100 000 душ — четверть всего населения Лондона. Их тела увозили на повозках и без всяких церемоний сбрасывали в общие могилы.

Усадьба Вулсторп представляла собой несколько обветшалое двухэтажное здание из серого известняка, примостившееся с краю долины реки Уитэм и окружённое яблоневыми деревьями и овечьими пастбищами. Здесь, сидя за своим рабочим столом, Ньютон отгораживался от ужасов, происходящих в большом мире. Возможно, он не был способен к сопереживанию, и потому эта задача давалась ему легко. А возможно, он просто понимал, что ничего не может сделать. Зачем беспокоиться о том, что не можешь изменить? К чему переживать о вещах, которые находятся в руках Всевышнего?

Когда-то люди считали Землю центром Вселенной. Легко понять, как они допустили такую ошибку. В конце концов, и Солнце, и Луна, и звёзды довольно очевидным образом вращаются вокруг Земли.

Если бы не несколько «но».

Пять планет, видных невооружённым глазом, — Меркурий, Венера, Марс, Юпитер и Сатурн — явно выделялись для наших предков на небесном своде тем, что медленно переползали с места на место на фоне других, неподвижных звёзд. Что самое интересное, они делали это с разной скоростью. Если следить за какой-нибудь из них каждую ночь, неделю за неделей, однажды она изменит направление движения, а потом снова пойдёт назад, вычерчивая в небе безумную петлю. Как это возможно, если все планеты движутся вокруг Земли?

Вопрос заключался вот в чём: как одна масса подчиняет себе другую? Ключом к разгадке стал магнетизм. Кусочки магнитного железняка обладают природным магнетизмом, кажется, будто какая-то неведомая сила притягивает некоторые из них друг к другу, преодолевая расстояние между ними. Отец греческой философии Фалес Милетский писал об этих необычных свойствах железняка ещё в VI веке до нашей эры.

В 1600 году английский учёный Уильям Гилберт предположил, что именно магнитные силы удерживают вместе все объекты в Солнечной системе. Он экспериментально доказал, что по мере увеличения массы магнитного железняка росла и сила притяжения, с которым он воздействовал на кусок железа. Гилберт также отметил, что притяжение было взаимным, то есть и сам кусок железа притягивал магнитный железняк с той же силой.

Мы обладаем ключевыми знаниями о поведении гравитации благодаря открытиям немецкого математика Иоганна Кеплера, которые он сделал в период с 1609 по 1619 год на основании работ датского астронома Тихо Браге (известного, помимо прочего, тем, что ему отрубили нос на дуэли и он до конца жизни носил на лице искусственный медный нос). В своей лаборатории на острове Вен, который сейчас принадлежит Швеции, Браге провёл множество наблюдений невооружённым глазом за планетами. Просидев много дней и ночей над записями Браге, Кеплер вывел три закона, управляющих поведением небесных тел.

Первый закон Кеплера гласит, что каждая планета движется по эллиптической орбите, в одном из фокусов которой находится Солнце. Эллипс — это особая кривая, а не просто овал. Для того чтобы его нарисовать, можно воткнуть в лист бумаги две кнопки, намотать на них леску, затем натянуть эту леску карандашом и провести вдоль неё его остриём. Кнопки при этом будут фокусами эллипса. С математической точки зрения где бы на эллипсе ни находился объект, сумма расстояний от него до фокусов будет одинаковой.

Тела, падающие под воздействием силы тяжести, движутся так быстро, что Галилею сложно было измерить время такого падения, пользуясь доступными ему на тот момент инструментами. Поэтому он придумал хитрый способ уменьшить силу гравитации и притормозить стремительное движение падающих объектов. Галилей ставил на стол доску под небольшим углом и спускал по ней шарики. Чем меньше был угол наклона, тем больше «размывалась» сила притяжения и тем медленнее двигался шар. Но самое важное наблюдение Галилея в этом эксперименте состояло в том, что, когда шарик достигал конца уклона, он продолжал катиться с постоянной скоростью, пока не падал с края стола.

На ровной столешнице без уклона сила притяжения «размыта» до нуля и не действует на шарик. Галилей заключил, что в отсутствие силы тело движется с постоянной скоростью.

Третий закон Кеплера, действующий в высоких небесных сферах, был далёк от повседневной жизни в Вулсторпе с её стадами овец на пастбищах, возами сена, подскакивающими на дорожных выбоинах, и петушиным пением холодными серыми утрами. Однако в мозгу Ньютона рождалась поистине революционная мысль, мысль, от которой у него замирало сердце. Что, если сила притяжения, действующая в космосе, точно так же работает и на Земле? До него ни один учёный ещё не высказывал подобного предположения, но что, если существует единый закон, действующий и в небесах, и в низменном земном мире? Что, если гравитация — это универсальная сила, влиянию которой подвержены все частицы материи без исключения?

Ньютон был прагматиком и понимал, что его озарение не будет ничего стоить, пока он сам не придаст ему ценность — то есть пока он не сможет использовать его для расчётов.

Для того чтобы понять, что Луна падает и в то же время остаётся для наших глаз на месте и что при этом на неё действует та же сила, которая заставляет яблоко упасть с дерева, требовалось огромное воображение. В те времена небо считалось обиталищем ангелов и самого Бога, которые, по представлениям греков, состоят из эфира, пятого элемента, полностью отличного от четырёх земных стихий — земли, огня, воздуха и воды. Но Ньютон не делал никаких различий между земным и небесным миром. В мире, где всё ещё преобладала религиозная догма, он оказался достаточно смелым, чтобы спустить небо на землю. Поведение тел на Земле управляется теми же законами, что и во всей Вселенной. Существуют универсальные законы, то есть такие, которые действуют в любом месте и в любое время. И Ньютон, человек, живший на заре научной мысли, чей отец не умел писать и вместо подписи ставил крестик, проник своим умом в самое сердце природы и увидел один из таких законов.

Ньютон открыл закон всемирного тяготения в 1666 году, но ещё 22 года не заявлял о нём миру. Никто не знает, почему так произошло, однако существует несколько версий. Одна из них состоит в том, что, когда Ньютон сравнил влияние силы притяжения Земли на расстоянии Луны и на Земле, он не смог получить подтверждения закона обратных квадратов. Возможно, его расчёт расстояния, произведённый в XVII веке, оказался неверен. К тому моменту, когда он это понял и провёл повторные вычисления, он уже переключился на другие научные задачи.

Ещё одна возможная причина, по которой Ньютон не опубликовал свой труд о всемирном тяготении сразу же: он полагал притяжение Земли таким, как будто вся её масса сконцентрирована в центре. Напомню, что при доказательстве закона обратных квадратов Ньютон сравнивал расстояние до Луны от центра Земли с расстоянием от яблока до центра Земли.

Ньютон был величайшим гением всех времён и самым удачливым из всех учёных, потому что устройство мира можно открыть лишь однажды.

Жозеф Луи Лагранж

В Ньютоне сочетались поразительные умственные способности и легковерность и заблуждения, которые не могли бы родиться даже в мозгу кролика.

Джордж Бернард Шоу

Эдмунд Галлей был горячим поклонником Ньютона, можно даже сказать, его другом, хотя во всём, что касалось взаимоотношений с людьми, Ньютон проявлял себя практически аутистом. Галлей приехал к Ньютону, чтобы разрешить спор, который возник, когда он с двумя друзьями сидел в лондонском кафе. Одним из этих друзей был Роберт Гук, человек, придумавший термин «клетка» для обозначения крошечных элементов, из которых состоят ткани растений. Второго звали Кристофер Рен, и в тот момент он работал над строительством собора Святого Павла на месте церкви, разрушенной Великим пожаром 1666 года.

Закончив читать письмо от Ньютона, Галлей был потрясён. Он понял, что держит в руках ключ к пониманию всей Вселенной.

Галлей немедленно написал Ньютону, умоляя того разрешить напечатать этот труд. Но перфекционист Ньютон ответил отказом. Он не был доволен своей работой и считал, что может улучшить её и расширить. Ему ещё было что сказать о принципах движения и законе всемирного тяготения, а главное — об их влиянии на окружающий мир.

Но Галлей пробил брешь в плотине, и вскоре её прорвало. Ньютон, столько времени ревностно охранявший собственные открытия, был готов поведать о них миру. В течение 18 месяцев он исступлённо работал, шлифуя свои идеи и представляя их в такой убедительной форме, чтобы читатель ни на секунду не мог усомниться в их правоте. Результатом этого труда стали «Philosophiæ Naturalis Principia Mathematica» — «Математические начала натуральной философии», опубликованные 5 июля 1687 года в трёх томах на 550 страницах. «Начала» не просто сделали Ньютона знаменитым. Они представили всеобъемлющую систему мироздания.

«Начала» показывают Ньютона как великого мыслителя эпохи Просвещения. Это необычно, учитывая, что наука была лишь одним из интересов в его жизни. В коробке, которая осталась после смерти Ньютона (той самой, где лежали его еретические заметки о природе Троицы), имелись и другие документы — сотни страниц, посвящённых его алхимическим экспериментам и заключениям, а также изучению Библии, например расчёты истинных параметров храма Соломона.

Ньютон был алхимиком и применял в своей работе навыки, полученные во время проживания в доме аптекаря в Грантеме. Он пытался превратить свинец в золото, воспроизводя эксперименты учёных, живших до него. Он также изучал Библию, стремясь постичь древнюю мудрость. Он верил, что Создатель повсюду оставил для него подсказки, и не все из них лежат в сфере науки.

Была середина марта, стояло ясное, холодное утро, и почти полная луна бледнела в голубом небе. Множество людей собрались на берегу в ожидании. Здесь были даже журналисты с телевидения; молодая женщина в красной дутой куртке и шарфе в клетку Burberry что-то говорит на камеру. Периодически кто-то в толпе посматривает на часы, а затем на реку. Кажется, что в ней нет ничего интересного — всего лишь вода, медленно текущая к океану, да парочка забавных лебедей у противоположного берега, которые то и дело ныряют в воду, выставляя вверх белые хвосты.

Дело происходит на реке Северн около деревни Минстерворт в Глостершире. Здесь всё дышит покоем, и сложно поверить, что вот-вот произойдёт что-то необычное. Может быть, мы зря проделали долгий путь и оставили машину где-то в полях? Может быть, это какая-то шутка и нас всех ввели в заблуждение?

Севернский бор — одна из примерно 60 приливных волн такого типа в мире. Самый большой и страшный из них возникает на реке Цяньтанцзян в Китае. Весной жуткая волна высотой с трёхэтажный дом движется по реке с такой скоростью, что большинство людей не смогли бы обогнать её даже бегом. Её рокот слышен на расстоянии 22 километров. Лодки на это время вытаскивают на сушу, иначе их просто разобьёт в щепки. Каждый год, несмотря на многочисленные предупреждающие знаки, установленные на берегу, несколько людей подходят слишком близко к воде, и их уносит волной.

Существует несколько условий для появления бора, в первую очередь дельта определённой формы и сильная амплитуда прилива. А дельта Северна, где разница в уровне воды при приливе и отливе составляет 15,4 метра, имеет вторую по величине амплитуду прилива в мире. Быстро поднимающаяся вода попадает в канал, который становится всё уже и мельче, и в какой-то момент скорость воды, движущейся против течения, превышает скорость самого течения. Происходит так называемый гидравлический прыжок, то есть волна поднимается и стремительно движется вверх по направлению к устью.

Нельзя сказать наверняка, когда люди впервые заметили динамику приливов и отливов. Но мы знаем, что наши предки несколько раз покидали Африку и расселялись по миру: 1,8 миллиона лет назад это впервые сделали Homo erectus, а 600 000 лет назад последними из Африки появились современные люди. С большой долей вероятности они двигались вдоль морских побережий, чтобы избежать препятствий (гор, пустынь и лесов) и постоянно иметь под рукой источники пищи. Пока наши дальние и не очень предки шагали босиком по песку, они кое-что уяснили для себя: дважды в день море вдыхает и выдыхает — выплёскивается на берег и возвращается в свои прежние границы. Если смотреть на это движение с утёса или высокой скалы, станет ясно, что на самом деле данный процесс более фундаментальный: дважды в день море поднимается и опускается.

Прошло время — много, много времени. Люди изобрели сельское хозяйство, построили города и начали размышлять о явлениях мира, в котором они живут. По воле случая античные цивилизации Запада жили у Средиземного моря, в котором приливы и отливы едва заметны. Население средиземноморских государств не знало о них, и это сыграло злую шутку с Юлием Цезарем, который в 55–54 годах до нашей эры привёл римский флот к берегам Британии.

При расчёте силы притяжения, с которой Земля влияет на Луну, Ньютон рассматривал всю массу планеты сконцентрированной в одной точке в её центре. Он даже смог доказать это, используя новомодную математику интегрального исчисления. Но такой подход был всего лишь удобным приближением. Разумеется, в реальности Земля гораздо больше точки. Соответственно, какие-то части планеты находятся ближе к Луне, а какие-то — дальше от неё. Приближённая к Луне часть Земли испытывает большее притяжение, чем другие. Ньютон понял, что у этой разницы в значении гравитационного воздействия должны быть серьёзные последствия. В первую очередь они должны затрагивать океаны, потому что вода, в отличие от твёрдой породы, движется свободно.

Представьте себе точку в океане, которая находится прямо напротив Луны. Притяжение Луны сильнее воздействует на воду на поверхности, чем на воду у дна, ведь дно более удалено от Луны. Ньютон понял, что эта разница в притяжении заставляет верхние слои воды двигаться относительно нижних по направлению к Луне.

Приливы — довольно странное явление. Они происходят дважды за 25 часов, а не за 24, они изменяются в зависимости от времени года и фаз Луны. Кроме того, они зависят от ландшафта. Но есть и ещё одна характеристика приливов, впервые отмеченная греческим философом Посидонием, которая кажется более удивительной, чем все остальные.

Посидоний жил между 135 и 51 годами до нашей эры и наблюдал за приливами в Атлантическом океане на побережье Испании. Кроме того, он обращал внимание и на воду в колодцах и заметил кое-что необычное. Когда вода в океане поднимается, родниковая вода уходит ниже под землю, и наоборот. Оригиналы записей Посидония утрачены, но греческий географ Страбон, живший в начале нашей эры, упоминает о них в своей «Географии»: «В [храме] Геракла в Гадесе [Кадисе] есть источник, к которому можно спуститься по нескольким ступеням (вода в нём хороша для питья). Этот источник действует противоположно движению моря: во время прилива его воды опадают, а во время отлива он вновь наполняется».

Позвольте мне привести ещё один пример того, как приливы возникают и в твёрдой материи, на этот раз более высокотехнологичный и современный. В ЦЕРНе, Европейской лаборатории физики элементарных частиц, расположенной около Женевы, субатомные частицы разгоняют до огромных скоростей в подземном тоннеле, длина окружности которого составляет 26,7 километра. Пока наверху мирно пасутся коровы, всего в 100 метрах под ними с невероятной силой сталкиваются мельчайшие строительные блоки материи. Кинетическая энергия изначальных частиц превращается в энергию массы частиц новых, которые появляются из вакуума, точно кролик из шляпы фокусника. Всю субатомную шрапнель, разлетающуюся от места столкновения, регистрируют огромные детекторы. Именно в этом субатомном «мусоре» в июле 2012 года и был найден бозон Хиггса (частица поля Хиггса, наделяющего все прочие субатомные частицы массой).

Но не только земные породы могут испытывать растяжение и сжатие. То же самое происходит и на Луне. На самом деле Земля вызывает на Луне куда более сильные приливы, чем Луна на Земле, потому что масса нашей планеты примерно в 81 раз больше массы её спутника. Соответственно, и приливная сила на Луне должна быть в 81 раз больше. Но, как мы помним, приливы вызывает не притяжение само по себе, а разность притяжений. Диаметр Луны равен примерно четверти диаметра Земли. Такое короткое расстояние означает, что разница в гравитации имеет в четыре раза меньше возможности проявить себя. Итак, сила, с которой Земля воздействует на Луну, вызывая растяжение, больше той, с которой Луна воздействует на Землю, не в 81, а примерно в 20 раз. Тем не менее и этого достаточно для растяжения породы примерно на десять метров.

Мы представляем себе Луну холодной и безжизненной. Кажется, будто ничто на её серой, покрытой кратерами поверхности никогда не изменялось. Но раз на Луну действуют силы сжатия и растяжения, значит, она вовсе не похожа на неподвижную пустыню. Задолго до изобретения телескопа люди замечали на Луне странные огни, которые зажигались каждые несколько месяцев. Одно из самых ранних наблюдений было сделано 18 июня 1178 года, когда пятеро монахов из Кентербери заявили, что были свидетелями взрыва на Луне. Эти загадочные огни, называемые ещё кратковременными лунными явлениями (КЛЯ), представляют собой одну из главных тайн Луны.

Приливные силы замедляют движение не только Луны. Скорость вращения Земли тоже уменьшается из-за них. Этот эффект менее заметен, чем на Луне, так как Земля гораздо массивнее, а значит, лучше сопротивляется попыткам изменить её движение. Представьте себе приливный горб в океане на той стороне Земли, которая смотрит прямо на Луну. Так как Земля вращается быстро, такой горб будет обгонять линию, соединяющую нашу планету со спутником. Сила притяжения Луны начнёт оттягивать приливный горб назад, замедляя движение Земли.

Из этого неизбежно следует вывод, что раньше Земля вращалась быстрее. И у этого предположения есть доказательство. Как ни странно, оно заключается в кораллах. Эти морские организмы, часто встречающиеся в тропических морях, выделяют карбонат кальция, из которого формируют свой твёрдый внешний скелет. Ежедневный и ежесезонный рост их внешнего скелета можно проследить по слоям карбоната кальция, примерно как динамику роста дерева можно понять по годовым кольцам.

Приливное влияние Луны на Землю замедляет движение нашей планеты, уменьшая её вращательный момент. Существует фундаментальный принцип физики, называемый сохранением количества движения при вращении, согласно которому вращательный момент изолированной (замкнутой) системы никогда не меняется. Значит, если вращательный момент Земли уменьшается, вращательный момент другого элемента системы должен компенсировать это, увеличившись. В нашем случае вариант только один — Луна.

Притяжение Луны создаёт два приливных бугра с двух сторон Земли, но тот, который возникает на той же стороне, что и Луна, притягивает её с наибольшей силой. Как мы уже знаем, этот приливный бугор обычно обгоняет Луну на её орбите, потому что Земля делает оборот вокруг своей оси быстрее, чем её обходит Луна. Поэтому гравитация Земли тащит Луну вперёд по её орбите, придавая ей ускорение.

Тот факт, что каждый год Луна удаляется от Земли на 3,8 сантиметра, означает, что когда-то она была гораздо ближе к нам. А это, в свою очередь, влияло на возникновение полных затмений — одного из самых потрясающих природных явлений.

Как мы уже знаем, полное затмение наступает, когда Луна проходит между Землёй и Солнцем, закрывая солнечный диск и отбрасывая тень на Землю. Полное затмение возможно потому, что Солнце, хотя оно и больше Луны в 400 раз, находится от нас в 400 раз дальше. Вот почему Солнце и Луна кажутся нам на небе равными по размеру. Для нас это очень удачное обстоятельство. Несмотря на то что в Солнечной системе существует более 170 лун, ни с одной планеты невозможно наблюдать полное затмение. Более того, нам повезло не только с местом, но и со временем.

Луна слишком велика по отношению к Земле, а её диаметр равен примерно четверти диаметра нашей планеты. Все прочие луны в Солнечной системе кажутся крошечными рядом со своими планетами. Кроме Плутона, луна которого ещё больше по отношению к его размерам, но с 2006 года Плутон перестал считаться планетой.

Такой размер Луны намекает нам, что и происхождение у неё было необычным. Учёные предполагают, что 4,55 миллиарда лет назад, когда наша планета только сформировалась, она столкнулась с небесным телом массой, примерно равной массе Марса (сегодня эту гипотетическую планету называют Тейей). Внутренние слои Земли превратились в жидкость, а часть её мантии выплеснулась в вакуум. Вокруг нашей планеты образовалось кольцо, похожее на те, которые опоясывают газовые гиганты в Солнечной системе. Из этого кольца быстро сформировалась Луна, орбита которой в то время находилась в десять раз ближе к Земле. После этого Луна начала постепенно отдаляться от нашей планеты.

Возникает интересный вопрос: всегда ли Луна отдалялась от Земли со скоростью 3,8 сантиметра в год? В 2013 году группа учёных во главе с Мэтью Хубером из Университета Пердью (Уэст-Лафайетт, Индиана) выяснила, как эта ситуация выглядела 50 миллионов лет назад. Они ввели данные о глубине океанов и очертаниях существовавших в то время континентов в компьютерный симулятор приливов и на основании его показателей сделали вывод, что в то время Луна удалялась от Земли медленнее, скорее всего, в два раза.

Всё дело в Атлантическом океане, который сегодня достаточно широк, чтобы сформировать большой приливный горб, влияющий на Луну и заставляющий её отступать достаточно быстро; 50 миллионов лет назад океан ещё не принял свою сегодняшнюю форму, поэтому его приливный горб был меньше, а влияние на движение Луны — слабее. В то время за большую часть приливного воздействия отвечал Тихий океан.

Восьмое марта 1979 года. Космический зонд NASA «Вояджер-1» пролетает через систему Юпитера быстрее пули, спеша на встречу с Сатурном в 1980 году. Но перед тем, как зонд навсегда покинет газовый гигант, управляющая команда заставляет его развернуть камеру назад и сделать прощальный снимок Ио. Навигационный инженер Линда Морабито первой видит изображение, преодолевшее расстояние 640 миллионов километров до Центра управления полётами, и у неё перехватывает дух. Из крошечной, видной лишь наполовину луны вырывается столб фосфоресцирующего газа.

Морабито первой за всю историю человечества увидела супервулканы Ио. На следующий день вся команда по управлению «Вояджером» склонилась над увеличенными фотографиями и данными измерения температур. Они обнаружили восемь гигантских столбов газа, выбрасывающих материю вверх на сотни километров. Оказалось, что Ио — самое геологически активное космическое тело в Солнечной системе, на котором располагаются более 400 вулканов.

Пара Юпитер–Ио — не единственная в Солнечной системе, в которой два небесных тела, движущиеся по орбитам вокруг друг друга, оказались зафиксированными в таком положении, что каждому из них видна только одна сторона другого. Существует ещё Плутон и его огромная луна Харон.

Самое интересное в Хароне то, что его диаметр равен половине диаметра Плутона. Благодаря этому Плутон некоторое время считался планетой с самой большой луной (относительно его собственных размеров) в Солнечной системе. Но в 2006 году Международный астрономический союз лишил Плутон статуса планеты и перевёл в разряд карликовых планет. Теперь он всего лишь один из многих десятков тысяч ледяных обломков, вращающихся вокруг Солнца на границе Солнечной системы.

Нагрев под влиянием приливных сил, кроме всего прочего, намекает на возможное зарождение жизни — не на Ио, так как тамошние условия слишком суровы, а на Европе. Европа нагревается за счёт влияния приливных сил Юпитера, Ио и Ганимеда и состоит в основном изо льда (в отличие от каменной Ио). Следовательно, внутренняя часть спутника должна была растаять. Где-то на Европе есть жидкая вода.

Тело, содержащее жидкость, вращается не так, как полностью твёрдое. Судя по вращению Европы, под десятикилометровым слоем льда на ней находится океан глубиной 100 километров — самый большой во всей Солнечной системе.

Приливы не единственное последствие влияния гравитации на Землю, так как она не является единой точкой, а занимает некоторое пространство. Ньютон открыл и ещё один эффект гравитации — предварение равноденствий.

Смена времён года на нашей планете происходит потому, что ось вращения Земли наклонена относительно плоскости орбиты, по которой она движется вокруг Солнца. В частности, как мы уже выяснили, ось отклоняется на 23,5 градуса по вертикали, и это означает, что и экватор Земли имеет такой же наклон относительно плоскости её орбитального движения. В Северном полушарии лето наступает, когда Земля поворачивается этим полушарием к Солнцу, а зима — когда полушарие смотрит в другую сторону. То же самое происходит и в Южном полушарии. Соответственно, когда в Северном полушарии зима — в Южном лето и наоборот.

Top.Mail.Ru Яндекс.Метрика